75 research outputs found

    Robust Multiple Lane Road Modeling Based on Perspective Analysis

    Get PDF
    Road modeling is the first step towards environment perception within driver assistance video-based systems. Typically, lane modeling allows applications such as lane departure warning or lane invasion by other vehicles. In this paper, a new monocular image processing strategy that achieves a robust multiple lane model is proposed. The identification of multiple lanes is done by firstly detecting the own lane and estimating its geometry under perspective distortion. The perspective analysis and curve fitting allows to hypothesize adjacent lanes assuming some a priori knowledge about the road. The verification of these hypotheses is carried out by a confidence level analysis. Several types of sequences have been tested, with different illumination conditions, presence of shadows and significant curvature, all performing in realtime. Results show the robustness of the system, delivering accurate multiple lane road models in most situations

    3D Tracking Using Multi-view Based Particle Filters

    Get PDF
    Visual surveillance and monitoring of indoor environments using multiple cameras has become a field of great activity in computer vision. Usual 3D tracking and positioning systems rely on several independent 2D tracking modules applied over individual camera streams, fused using geometrical relationships across cameras. As 2D tracking systems suffer inherent difficulties due to point of view limitations (perceptually similar foreground and background regions causing fragmentation of moving objects, occlusions), 3D tracking based on partially erroneous 2D tracks are likely to fail when handling multiple-people interaction. To overcome this problem, this paper proposes a Bayesian framework for combining 2D low-level cues from multiple cameras directly into the 3D world through 3D Particle Filters. This method allows to estimate the probability of a certain volume being occupied by a moving object, and thus to segment and track multiple people across the monitored area. The proposed method is developed on the basis of simple, binary 2D moving region segmentation on each camera, considered as different state observations. In addition, the method is proved well suited for integrating additional 2D low-level cues to increase system robustness to occlusions: in this line, a naïve color-based (HSI) appearance model has been integrated, resulting in clear performance improvements when dealing with complex scenarios

    A New Fast Motion Estimation and Mode Decision algorithm for H.264 Depth Maps encoding in Free Viewpoint TV

    Get PDF
    In this paper, we consider a scenario where 3D scenes are modeled through a View+Depth representation. This representation is to be used at the rendering side to generate synthetic views for free viewpoint video. The encoding of both type of data (view and depth) is carried out using two H.264/AVC encoders. In this scenario we address the reduction of the encoding complexity of depth data. Firstly, an analysis of the Mode Decision and Motion Estimation processes has been conducted for both view and depth sequences, in order to capture the correlation between them. Taking advantage of this correlation, we propose a fast mode decision and motion estimation algorithm for the depth encoding. Results show that the proposed algorithm reduces the computational burden with a negligible loss in terms of quality of the rendered synthetic views. Quality measurements have been conducted using the Video Quality Metric

    Object Tracking from Unstabilized Platforms by Particle Filtering with Embedded Camera Ego Motion

    Get PDF
    Visual tracking with moving cameras is a challenging task. The global motion induced by the moving camera moves the target object outside the expected search area, according to the object dynamics. The typical approach is to use a registration algorithm to compensate the camera motion. However, in situations involving several moving objects, and backgrounds highly affected by the aperture problem, image registration quality may be very low, decreasing dramatically the performance of the tracking. In this work, a novel approach is proposed to successfully tackle the tracking with moving cameras in complex situations, which involve several independent moving objects. The key idea is to compute several hypotheses for the camera motion, instead of estimating deterministically only one. These hypotheses are combined with the object dynamics in a Particle Filter framework to predict the most probable object locations. Then, each hypothetical object location is evaluated by the measurement model using a spatiogram, which is a region descriptor based on color and spatial distributions. Experimental results show that the proposed strategy allows to accurately track an object in complex situations affected by strong ego motion

    Automatic Feature-Based Stabilization of Video with Intentional Motion through a Particle Filter

    Get PDF
    Video sequences acquired by a camera mounted on a hand held device or a mobile platform are affected by unwanted shakes and jitters. In this situation, the performance of video applications, such us motion segmentation and tracking, might dramatically be decreased. Several digital video stabilization approaches have been proposed to overcome this problem. However, they are mainly based on motion estimation techniques that are prone to errors, and thus affecting the stabilization performance. On the other hand, these techniques can only obtain a successfully stabilization if the intentional camera motion is smooth, since they incorrectly filter abrupt changes in the intentional motion. In this paper a novel video stabilization technique that overcomes the aforementioned problems is presented. The motion is estimated by means of a sophisticated feature-based technique that is robust to errors, which could bias the estimation. The unwanted camera motion is filtered, while the intentional motion is successfully preserved thanks to a Particle Filter framework that is able to deal with abrupt changes in the intentional motion. The obtained results confirm the effectiveness of the proposed algorith

    An Efficient Multiple Object Detection and Tracking Framework for Automatic Counting and Video Surveillance Applications

    Get PDF
    Automatic visual object counting and video surveillance have important applications for home and business environments, such as security and management of access points. However, in order to obtain a satisfactory performance these technologies need professional and expensive hardware, complex installations and setups, and the supervision of qualified workers. In this paper, an efficient visual detection and tracking framework is proposed for the tasks of object counting and surveillance, which meets the requirements of the consumer electronics: off-the-shelf equipment, easy installation and configuration, and unsupervised working conditions. This is accomplished by a novel Bayesian tracking model that can manage multimodal distributions without explicitly computing the association between tracked objects and detections. In addition, it is robust to erroneous, distorted and missing detections. The proposed algorithm is compared with a recent work, also focused on consumer electronics, proving its superior performance

    Robust automatic target tracking based on a Bayesian ego-motion compensation framework for airborne FLIR imagery

    Get PDF
    Automatic target tracking in airborne FLIR imagery is currently a challenge due to the camera ego-motion. This phenomenon distorts the spatio-temporal correlation of the video sequence, which dramatically reduces the tracking performance. Several works address this problem using ego-motion compensation strategies. They use a deterministic approach to compensate the camera motion assuming a specific model of geometric transformation. However, in real sequences a specific geometric transformation can not accurately describe the camera ego-motion for the whole sequence, and as consequence of this, the performance of the tracking stage can significantly decrease, even completely fail. The optimum transformation for each pair of consecutive frames depends on the relative depth of the elements that compose the scene, and their degree of texturization. In this work, a novel Particle Filter framework is proposed to efficiently manage several hypothesis of geometric transformations: Euclidean, affine, and projective. Each type of transformation is used to compute candidate locations of the object in the current frame. Then, each candidate is evaluated by the measurement model of the Particle Filter using the appearance information. This approach is able to adapt to different camera ego-motion conditions, and thus to satisfactorily perform the tracking. The proposed strategy has been tested on the AMCOM FLIR dataset, showing a high efficiency in the tracking of different types of targets in real working conditions

    Robust Tracking in Aerial Imagery Based on an Ego-Motion Bayesian Model

    Get PDF
    A novel strategy for object tracking in aerial imagery is presented, which is able to deal with complex situations where the camera ego-motion cannot be reliably estimated due to the aperture problem (related to low structured scenes), the strong ego-motion, and/or the presence of independent moving objects. The proposed algorithm is based on a complex modeling of the dynamic information, which simulates both the object and the camera dynamics to predict the putative object locations. In this model, the camera dynamics is probabilistically formulated as a weighted set of affine transformations that represent possible camera ego-motions. This dynamic model is used in a Particle Filter framework to distinguish the actual object location among the multiple candidates, that result from complex cluttered backgrounds, and the presence of several moving objects. The proposed strategy has been tested with the aerial FLIR AMCOM dataset, and its performance has been also compared with other tracking techniques to demonstrate its efficiency

    Content Delivery System for Optimal VoD Streaming

    Full text link
    The demand of video contents has rapidly increased in the past years as a result of the wide deployment of IPTV and the variety of services offered by the network operators. One of the services that has especially become attractive to the customers is real-time video on demand (VoD) because it offers an immediate streaming of a large variety of video contents. The price that the operators have to pay for this convenience is the increased traffic in the networks, which are becoming more congested due to the higher demand for VoD contents and the increased quality of the videos. As a solution, in this paper we propose a hierarchical network system for VoD content delivery in managed networks, which implements redistribution algorithm and a redirection strategy for optimal content distribution within the network core and optimal streaming to the clients. The system monitors the state of the network and the behavior of the users to estimate the demand for the content items and to take the right decision on the appropriate number of replicas and their best positions in the network. The system's objectives are to distribute replicas of the content items in the network in a way that the most demanded contents will have replicas closer to the clients so that it will optimize the network utilization and will improve the users' experience. It also balances the load between the servers concentrating the traffic to the edges of the network

    Low latency LDGM code for multimedia-packet stream in bursty packet loss networks

    Get PDF
    In this paper we present a FEC scheme based on simple LDGM codes to protect packetized multimedia streams. We demonstrate that simple LDGM codes working with a limited number of packets (small values of k) obtain recovery capabilities, against bursty packet losses, that are similar to those of other more complex FEC-based schemes designed for this type of channels
    corecore